Respuesta :
Answer:
Part A:
[tex]r\geq 173.806 m[/tex]
Part B:
[tex]F=5289.5757 N[/tex]
Explanation:
Part A:
Airplane is moving in circular path so acceleration in circular path is given by:
[tex]a_c=\frac{V^2}{r}[/tex]
Where:
V is the velocity of object in circular path
r is the radius of circular path
In order to find radius r. Above equation will become:
[tex]r=\frac{V^2}{a_c}[/tex]
V=104 m/s
a_c=6.35*g=6.35*9.8=62.23 m/s^2
[tex]r\geq \frac{104^2}{62.23}\\ r\geq 173.806 m[/tex]
Part B:
Force on a object moving in a circular path is:
[tex]F=\frac{mV^2}{r}\\[/tex]
r=173.806 m
m=85 kg
V=104 m/s
[tex]F=\frac{85*(104)^2}{173.806} \\F=5289.5757 N[/tex]
(a) The minimum radius will be "173.806 m".
(b) The magnitude of net force will be "5289.58 N".
Given:
- Velocity, [tex]V = 104 \ m/s[/tex]
- Mass, [tex]m = 85 \ kg[/tex]
(a)
We know,
→ [tex]a_c = mg[/tex]
[tex]= 6.35\times g[/tex]
[tex]= 6.35\times 9.8[/tex]
[tex]= 62.23 \ m/s^2[/tex]
Now,
Acceleration in circular path will be:
→ [tex]a_c = \frac{V^2}{r}[/tex]
or,
→ [tex]r = \frac{V^2}{a_c}[/tex]
By substituting the values, we get
[tex]= \frac{(104)^2}{62.23}[/tex]
[tex]= 173.806 \ m[/tex] (radius)
(b)
The force on object will be:
→ [tex]F = \frac{mV^2}{r}[/tex]
[tex]= \frac{85\times (104)^2}{173.806}[/tex]
[tex]= 5289.58 \ N[/tex]
Thus the approach above is correct.
Learn more about net force here:
https://brainly.com/question/14473883