What is the median value of the set R, if for every term in the set, [tex]R_n = R_{n-1} + 3[/tex]? (1) The first term of set R is 15. (2) The mean of set R is 36.

Respuesta :

Answer:

36

Step-by-step explanation:

Given that

[tex]R_n = R_{n+1} +3[/tex] is given

First term is 15

This is an arithmetic series with a =15 and d =3

If n is the number of terms, then we have

Sum of n terms = 36 xn = 36n

But as per arithmetic progression rule

[tex]S_n = \frac{n}{2} [2a+(n-1)d]\\= \frac{n}{2} [30+(n-1)3]=36n[/tex]

[tex]72 = 30+3n-3\\n-=15[/tex]

When there are n terms we have middle term is the 8th term

Hence median is 8th term

=[tex]a_8 = 15+7(3) \\=36[/tex]