Respuesta :

Answer: It will occupy [tex]4.45\times 10^3ml[/tex] at the same temperature and 475 mm Hg.

Explanation:

Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.

[tex]P\propto \frac{1}{V}[/tex]     (At constant temperature and number of moles)

[tex]P_1V_1=P_2V_2[/tex]    (At constant temperature and number of moles)

where,

[tex]P_1[/tex] = initial pressure of gas = 760 mm Hg

[tex]P_2[/tex] = final pressure of gas = 475 mm Hg

[tex]V_1[/tex] = initial volume of gas = [tex]2.78\times 10^3ml[/tex]

[tex]V_2[/tex]  = final volume of gas = ?

Putting in the values:

[tex]760mm Hg\times 2.78\times 10^3ml=475 mm Hg\times V_2[/tex]

[tex]V_2=4.45\times 10^3ml[/tex]

Thus it will occupy [tex]4.45\times 10^3ml[/tex] at the same temperature and 475 mm Hg

The volume that it will occupy at the same temperature is 4448mL

According to Boyle's law, the pressure of a given mass of gas is inversely proportional to the volume. It is expressed mathematically as:

[tex]P\alpha\frac{1}{V}\\P=\frac{k}{V}\\PV=k[/tex]

This can be expressed as [tex]P_1V_1=P_2V_2[/tex]

Given the following parameters

P₁ = 760mmHg

V₁ = 2.78 x 10³ mL

P₂ = 475mmHg

V₂ = ?

Substitute the given parameters into the formula

[tex]V_2=\frac{P_1V_1}{P_2}\\V_2=\frac{760\times 2780}{475}\\V_2= 4448mL[/tex]

Hence the volume that it will occupy at the same temperature is 4448mL

learn more here: https://brainly.com/question/1696010