A car starts from rest at a stop sign. It accelerates at 4.6 m/s^2 for 6.2 s , coasts for 2.1s , and then slows down at a rate of 3.3 m/s^2 for the next stop sign. How far apart the are the stop signs?

Respuesta :

Answer:

D = 271.54 m

Explanation:

given,

1. car accelerates at 4.6 m/s² for 6.2 s

2. constant speed for 2.1 s

3. slows down at 3.3 m/s²

distance travel for case 1

using equation of motion

 [tex]d_1 = u t +\dfrac{1}{2}at^2[/tex]

 [tex]d_1 =\dfrac{1}{2}\times 4.6\times 6.2^2[/tex]

      d₁ = 88.41 m

case 2

constant speed for 2.1 s now, we have to find velocity

v = u  + at

v = 0 + 4.6 x 6.2

v = 28.52 m/s

distance travel in case 2

d₂ = v x t

d₂ = 28.52 x 2.1 = 59.89 m

for case 3

distance travel by the car

v² = u² + 2 a s

final velocity if the car is zero

0² = 28.52² + 2 x (-3.3) x d₃

6.6 d₃ = 813.39

 d₃ = 123.24 m

total distance travel by the car

D = d₁ + d₂ + d₃

D = 88.41 + 59.89 + 123.24

D = 271.54 m