Respuesta :

Answer:

The range is the resulting y-values we get after substituting all the possible x-values.

For the given function : [tex]f(x) = \frac{3}{4x} -4[/tex]

See the attached figure.

The zeros of the denominator at x = 0

The domain is: (-∞,0)∪(0,∞)

The range of the function is the domain of the inverse function of f(x)

y = 3/(4x) - 4

y + 4 = 3/(4x)

4x = 3/(y+4)

[tex]x=\frac{3}{4(y+4)}[/tex]

The zeros of the inverse function:

4(y+4) = 0

y + 4 = 0

y = -4

∴ The range is (-∞,-4)∪(-4,∞)

So, the answer is {y | y > –4} ∪ {y | y < – 4}

=========================================

Note: If the given function is : [tex]f(x) = \frac{3}{4} x-4[/tex]

It will be first degree polynomial function.

Both of the domain and the range = all real numbers R

Ver imagen Matheng