Respuesta :
Answer:
- plane: 550 mph
- wind: 50 mph
Step-by-step explanation:
If p and w represent the speeds of the plane and wind, respectively, the speed into the wind is ...
p - w = (3000 mi)/(6 h) = 500 mi/h
And, the speed with the wind is ...
p + w = (3000 mi)/(5 h) = 600 mi/h
Adding these two equations gives us ...
2p = 1100 mi/h
p = 550 mi/h . . . . . . . divide by 2
Then the wind speed is ...
w = 600 mi/h - p = (600 -550) mi/h
w = 50 mi/h
The rate of the plane in still air is 550 mi/h; the rate of the wind is 50 mi/h.
Answer:
Step-by-step explanation:
let speed of plane in still air =x
speed of wind=y
(x-y)6=3000
x-y=3000/6=500 ...(1)
(x+y)5=3000
x+y=3000/5=600 ...(2)
adding (1) and (2)
2x=1100
x=1100/2=550
550 +y=600
y=600-550=50
speed of plane in still air=550 m/hr
speed of wind=50 m/hr