Respuesta :

gmany

Answer:

[tex]\large\boxed{x=\dfrac{5}{4},\ y=\dfrac{15}{16}}[/tex]

Step-by-step explanation:

[tex]\left\{\begin{array}{ccc}y=\dfrac{3}{4}x&(1)\\\dfrac{5}{2}x+2y=5&(2)\end{array}\right\\\\\text{Substitute}\ (1)\ \text{to}\ (2):\\\\\dfrac{5}{2}x+2\left(\dfrac{3}{4}x\right)=5\\\\\dfrac{5}{2}x+\dfrac{3}{2}x=5\\\\\dfrac{5+3}{2}x=5\\\\\dfrac{8}{2}x=5\\\\4x=5\qquad\text{divide both sides by 4}\\\\x=\dfrac{5}{4}[/tex]

[tex]\text{Put the value of}\ x\ \text{to (1)}\\\\y=\dfrac{3}{4}\cdot\dfrac{5}{4}\\\\y=\dfrac{15}{16}[/tex]

Answer:

Step-by-step explanation:

y = 3x/4 .........(1)

5x/2 + 2y = 5 .......(2)

Putting (1) into (2)

5x/2 + 2(3x/4) = 5

5x/2 + 3x/2 = 5

Multiply each term by 2

5x + 3x = 10

8x = 10

x = 10/8

x = 5/4

x = 1 1/4

And y = 3x/4

y = 3(5/4) ÷ 4

y = 15/4 ÷ 4

y = 15/(4×4)

y = 15/16