Step-by-step explanation:
The point-slope form of an equation of a line:
[tex]y-y_1=m(x-x_1)[/tex]
m - slope
(x₁, y₁) - point on a line
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have two points (-5, -1) and (6, -5). Substitute:
[tex]m=\dfrac{-5-(-1)}{6-(-5)}=\dfrac{-5+1}{6+5}=-\dfrac{4}{11}[/tex]
Put the value of a slope and coordinates of a point to the equation of a line:
[tex](-5,\ -1),\ m=-\dfrac{4}{11}\\\\y-(-1)=-\dfrac{4}{11}(x-(-5))\\\\y+1=-\dfrac{4}{11}(x+5)[/tex]
[tex](6,\ -5),\ m=-\dfrac{4}{11}\\\\y-(-5)=-\dfrac{4}{11}(x-6)\\\\y+5=-\dfrac{4}{11}(x-6)[/tex]