The variables A, B, and C represent polynomials where A = x + 1, B = x2 + 2x − 1, and C = 2x. What is AB + C in simplest form?

Respuesta :

xSamx
Well, they've given you A,B, and C,

AB+C will be
[tex]=(x+1)(x^2+2x-1)+2x[/tex]
[tex]=(x^3+3 x^2+x-1)+2x[/tex]
[tex]=x^3+3 x^2+3 x-1[/tex]

Answer: The simplest form is, [tex]x^3+3x^2+3x-1[/tex]

Step-by-step explanation:

Given :

[tex]A=x + 1[/tex]

[tex]B=x^2+2x-1[/tex]

[tex]C=2x[/tex]

The given expression is, [tex]AB+C[/tex]

Now put the values of A, B and C in the given expression, we get the simplest form.

[tex]AB+C[/tex]

[tex]=(x + 1)\times (x^2+2x-1)+2x[/tex]

[tex]=x^3+2x^2-x+x^2+2x-1+2x[/tex]

[tex]=x^3+3x^2+3x-1[/tex]

Hence, the simplest form of the given expression is, [tex]x^3+3x^2+3x-1[/tex]