Respuesta :

Answer:

[tex]b_{2}=\frac{2A}{h}-b_{1}[/tex]


Step-by-step explanation:

Area of Trapezoid is given by:

[tex]A=\frac{1}{2}(b_{1}+b_{2})h[/tex]

Using distributive property [ [tex]a(b+c)=ab+ac[/tex] ] and simplifying:

[tex]A=\frac{1}{2}hb_{1}+\frac{1}{2}hb_{2}[/tex]

Now, doing some algebra and solving for [tex]b_{2}[/tex]  gives us:

[tex]A-\frac{1}{2}hb_{1}=\frac{1}{2}hb_{2}\\\frac{A-\frac{1}{2}hb_{1}}{\frac{1}{2}h}=b_{2}\\\frac{A}{\frac{h}{2}}-\frac{\frac{1}{2}hb_{1}}{\frac{1}{2}h}=b_{2}\\\frac{2A}{h}-b_{1}=b_{2}[/tex]

This is our answer.

Answer:

A.  b1 = (2A -b2h)/h

Step-by-step explanation:

Multiply by 2 and expand the right side

 2A = b1h +b2h

Subtract the b2 term

 2A -b2h = b1h

Divide by h

b1 = (2A -b2h)/h

Hope this helps :]