Answer:
a) 0.324 m
b) -2.4 m
c) 1.08 m/s
d) -4 m/s
Explanation:
Initial position [tex](x,y)=(0,0)[/tex]
Initial velocity [tex](u_x,u_y)=(0.0,-4.0)m/s[/tex]
Acceleration [tex](a_x,a_y)=(1.8,0.0)m/s^2[/tex]
We need to use the following equations of motion:
[tex]S=ut+\frac{1}{2}at^2[/tex]
[tex]v=u+at[/tex]
a) [tex]S_x=u_xt+\frac{1}{2}a_xt^2=(0)(0.6)+(0.5)(1.8)(0.6^2)=0.324m[/tex]
b) [tex]S_y=u_yt+\frac{1}{2}a_yt^2=(-4.0)(0.6)+(0.5)(0)(0.6^2)=-2.4m[/tex]
c) [tex]v_x=u_x+a_xt=0+(1.8)(0.6)=1.08m/s[/tex]
d) [tex]v_y=u_y+a_yt=-4.0+(0)(0.6)=-4m/s[/tex]