Respuesta :

Answer:

Therefore the height of the tower is 116.75 m.

Step-by-step explanation:

Given that a pole that is 2.6 m tall casts a shadow that is 1.03 m long.

Here the height of a object directly proportional to the shadow. It means

Height of the object ∝ shadow

Height of the object= k.shadow

[k is the proportional constant.]

[tex]\Rightarrow \frac{h}{s} =k[/tex]    [Height of object is denoted by h and shadow is denoted by s]

Then,

[tex]\frac{h_1}{s_1} =k[/tex]       [h₁ is the height of the pole and s₁is the length of the shadow]

Again for the tower

[tex]\frac{h_2}{s_2}=k[/tex]      [h₂ is the height of the tower and s₂ is the length of the shadow]

Therefore,

[tex]\frac{h_1}{s_1}=\frac{h_2}{s_2} =k[/tex]

[tex]\Rightarrow\frac{h_1}{s_1}=\frac{h_2}{s_2}[/tex]............(1)

Given [tex]h_1 = 2.6 m[/tex]  ,[tex]s_1=1.03m[/tex]  and   [tex]s_2=46.25m[/tex]

Putting the value of [tex]h_1,s_1[/tex] and [tex]s_2[/tex]  equation (1)

[tex]\frac{2.6}{1.03}=\frac{h_2}{46.25}[/tex]

[tex]\Rightarrow h_2 \times1.03= 2.6\times 46.25[/tex]          [cross multiplication]

[tex]\Rightarrow h_2 = \frac{2.6\times 46.25}{1.03}[/tex]

[tex]\Rightarrow h_2= 116.75[/tex]

Therefore the height of the tower is 116.75 m.