brainliest and 20 pints please help
The data shown in the table below represents the weight, in pounds, of a little girl, recorded each year on her birthday.

Age (in years) Weight (in pounds)
2 32
6 47
7 51
4 40
5 43
3 38
8 60
1 23
Part A: Algebraically write the equation of the best fit line in slope-intercept form. Include all of your calculations in your final answer.
Part B: Use the equation for the line of best fit to approximate the weight of the little girl at an age of 14 years old.

Respuesta :

Step-by-step  Explanation:

Part A: Algebraically write the equation of the best fit line in slope-intercept form. Include all of your calculations in your final answer.

Considering the data

Age (in years)                Weight (in pounds)

2                                                32

6                                                 47

7                                                 51

4                                                 40

5                                                 43

3                                                 38

8                                                 60

1                                                  23

Considering the slope intercept form

[tex]y = mx + b[/tex]

where [tex]m[/tex] is the slope of the line and [tex]b[/tex] is the y-intercept.

Taking two points, lets say (2, 32) and (8, 60)

as

[tex]\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(2,\:32\right),\:\left(x_2,\:y_2\right)=\left(8,\:60\right)[/tex]

[tex]m=\frac{60-32}{8-2}[/tex]

[tex]m=\frac{14}{3}[/tex]

so

[tex]y = mx + b[/tex]

[tex]\:\:32\:=\:\left(\frac{14}{3}\right)2\:+\:b[/tex]

[tex]\mathrm{Switch\:sides}[/tex]

[tex]\left(\frac{14}{3}\right)\cdot \:2+b=32[/tex]

[tex]b=\frac{68}{3}[/tex]

Thus

[tex]y = mx + b[/tex]

as

[tex]m=\frac{14}{3}[/tex] and [tex]b=\frac{68}{3}[/tex]

substituting in the slop-intercept form

[tex]y=\left(\frac{14}{3}\right)x+\left(\frac{68}{3}\right)[/tex]

Therefore, [tex]y=\left(\frac{14}{3}\right)x+\left(\frac{68}{3}\right)[/tex] is the equation of the best fit line in slope-intercept form.

Part B: Use the equation for the line of best fit to approximate the weight of the little girl at an age of 14 years old.

As the equation of line is

[tex]y=\left(\frac{14}{3}\right)x+\left(\frac{68}{3}\right)[/tex]

So in order to find the weight of the little girl at an age of 14 years old, put

[tex]x = 14[/tex] in the above equation.

as

[tex]y=\left(\frac{14}{3}\right)x+\left(\frac{68}{3}\right)[/tex]

[tex]y=\left(\frac{14}{3}\right)\left(14\right)+\left(\frac{68}{3}\right)[/tex]          ∵  [tex]x = 14[/tex]

[tex]\:y=88[/tex]

Therefore, the approximate weight of the little girl at an age of 14 years old will be 88 pounds.

Answer: Copy and Paste Version

Step-by-step explanation:

Y = mx + b

Taking two points (2,32) (8,60)

Slope between the 2 points is y2 - y1/x2 - x1

(x1,y1) (2,32) , (x2 - y2) (8,60)

m = 60 - 32/ 8 - 2

m = 14/3

y= mx + b

32 = (14/3) 2 + B

(14/3) times 2 + b = 32

b = 68/3

substituting in the slop-intercept form: y = (14/3) x + 68/3

Part B:

As the equation of line is

y = (14/3) x + 68/3

We have to put

X = 14 in the above equation.

y = (14/3) (14) + (68/3)

​Y = 88 lbs