Respuesta :

[tex]$\cos\theta=\frac{\text{5}}{\text{13}}, \ \sin\theta=\frac{\text{12}}{13}, \ \tan\theta=\frac{\text{12}}{\text{5}}[/tex]

[tex]$\sec\theta=\frac{\text{13}}{\text{5}},\ \csc \theta=\frac{\text{13}}{\text{12}} , \ \cot \theta=\frac{\text{5}}{\text{12}}[/tex]

Solution:

Given triangle is a right triangle.

Base = 5, Hypotenuse = 13, Height = ?

Height (h) = opposite

In right triangle, square of the hypotenuse is equal to the sum of the squares of the other two sides.

[tex]5^2+h^2=13^2[/tex]

[tex]25+h^2=169[/tex]

[tex]h^2=144[/tex]

Taking square root on both sides.

h = 12

[tex]$\cos\theta=\frac{\text{Base}}{\text{Hypotenuse}}[/tex]

[tex]$\cos\theta=\frac{\text{5}}{\text{13}}[/tex]

[tex]$\sin\theta=\frac{\text{Opposite}}{\text{Hypotenuse}}[/tex]

[tex]$\sin\theta=\frac{\text{12}}{13}[/tex]

[tex]$\tan\theta=\frac{\text{Opposite}}{\text{Base}}[/tex]

[tex]$\tan\theta=\frac{\text{12}}{\text{5}}[/tex]

[tex]$\sec\theta=\frac{\text{Hypotenuse}}{\text{Base }}[/tex]

[tex]$\sec\theta=\frac{\text{13}}{\text{5}}[/tex]

[tex]$\csc \theta=\frac{\text{Hypotenuse}}{\text{Opposite }}[/tex]

[tex]$\csc \theta=\frac{\text{13}}{\text{12}}[/tex]

[tex]$\cot \theta=\frac{\text{Base }}{\text{Opposite}}[/tex]

[tex]$\cot \theta=\frac{\text{5}}{\text{12}}[/tex]