Solve for x in the equation x squared minus 12 x + 59 = 0. x = negative 12 plus-or-minus StartRoot 85 EndRoot x = negative 6 plus-or-minus StartRoot 23 EndRoot i x = 6 plus-or-minus StartRoot 23 EndRoot i x = 12 plus-or-minus StartRoot 85 EndRoot

Respuesta :

Value of x is: [tex]x=6\pm\sqrt{23}i[/tex]

Option B is correct option.

Step-by-step explanation:

We need to solve the equation [tex]x^2-12x+59=0[/tex] and find value of x.

Using quadratic formula:

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

Putting values of a, b and c and finding the value of x

a=1, b=-12 and c=59

[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\\x=\frac{-(-12)\pm\sqrt{(-12)^2-4(1)(59)}}{2(1)}\\x=\frac{12\pm\sqrt{144-236}}{2}\\x=\frac{12\pm\sqrt{-92}}{2}\\x=\frac{12\pm\sqrt{92}i}{2}\\We\,\,know\,\sqrt{-1} \,\,is\,\,i\\x=\frac{12\pm2\sqrt{23}i}{2}\\x=\frac{2(6\pm\sqrt{23}i)}{2}\\x=6\pm\sqrt{23}i[/tex]

So, value of x is: [tex]x=6\pm\sqrt{23}i[/tex]

Option B is correct option.

Answer:

On edge it's C

Step-by-step explanation:

x= 6 ±[tex]\sqrt{23} i[/tex]