Respuesta :

Answer:

The correct answer is option 3.

Step-by-step explanation:

Given : ΔPQR, QM is altitude of the triangle

PM  = 8

MR = 18

To find = QM

Solution :

PR = 8 + 18  = 26

Let, PQ = x  , QR = y, QM = z

Applying Pythagoras Theorem in ΔPQR

[tex]PQ^2+QR^2=PR^2[/tex]

[tex]x^2+y^2=(26)^2[/tex]..[1]

Applying Pythagoras Theorem in ΔPQM

[tex]PM^2+QM^2=PQ^2[/tex]

[tex]8^2+z^2=(x)^2[/tex]..[2]

Applying Pythagoras Theorem in ΔQMR

[tex]MR^2+QM^2=QR^2[/tex]

[tex]18^2+z^2=(y)^2[/tex]..[3]

Putting values of [tex]x^2[/tex] and [tex]y^2[/tex] from [2] and [3 in [1].

[tex]8^2+z^2+18^2+z^2=(26)^2[/tex]

[tex]2z^2=(26)^2-(8)^2-(18)^2[/tex]

[tex]2z^2=288[/tex]

[tex]z^2=144[/tex]

z = ±12

z = 12 = QM ( ignoring negative value)

The length of QM is 12.