Answer:
B
Step-by-step explanation:
First find the circumference of the circle with radius of 9 inches:
[tex]C=2\pi r=2\pi \cdot 9=18\pi \ inches[/tex]
The full angle has 360°, so, to find the length of the arc DE, you can write:
[tex]360^{\circ}\ - \ 18\pi \\ \\145^{\circ}\ - \ x[/tex]
which yields a proportion:
[tex]\dfrac{360}{145}=\dfrac{18\pi}{x}\\ \\360x=145\cdot 18\pi\\ \\x=\dfrac{145\cdot 18\pi }{360}=\dfrac{145\pi}{20}=7.25\pi\approx 22.8\ inches[/tex]