What is the minimum mass of ethylene glycol (C2H6O2) that must be dissolved in 14.5 kg of water to prevent the solution from freezing at −12.6°F? (Assume ideal behavior.)

Respuesta :

Answer : The minimum mass of ethylene glycol is, 12000.2 grams.

Explanation :  Given,

Molal-freezing-point-depression constant [tex](K_f)[/tex] for water = [tex]1.86^oC/m[/tex]

Mass of water (solvent) = 14.5 kg

Molar mass of ethylene glycol = 62.07 g/mole

Formula used :  

[tex]\Delta T_f=i\times K_f\times m\\\\T^o-T_s=i\times K_f\times\frac{\text{Mass of ethylene glycol}}{\text{Molar mass of ethylene glycol}\times \text{Mass of water in Kg}}[/tex]

where,

[tex]\Delta T_f[/tex] = change in freezing point

[tex]\Delta T_s[/tex] = freezing point of solution = [tex]-12.6^oF=-24.8^oC[/tex]

Conversion used :

[tex]^oF=\frac{9}{5}^oC+32[/tex]

[tex]\Delta T^o[/tex] = freezing point of water = [tex]0^oC[/tex]

i = Van't Hoff factor = 1 (for non-electrolyte)

[tex]K_f[/tex] = freezing point constant for water = [tex]1.86^oC/m[/tex]

m = molality

Now put all the given values in this formula, we get

[tex]0^oC-(-24.8^oC)=1\times (1.86^oC/m)\times \frac{\text{Mass of ethylene glycol}}{62.07g/mol\times 14.5kg}[/tex]

[tex]\text{Mass of ethylene glycol}=12000.2g[/tex]

Therefore, the minimum mass of ethylene glycol is, 12000.2 grams.