Answer: The mass of [tex]D_2O[/tex] needed is 0.96 grams
Explanation:
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] .....(1)
Given mass of [tex]ND_3[/tex] = 320.0 mg = 0.320 g (Conversion factor: 1 g = 1000 mg)
Molar mass of [tex]ND_3[/tex] = 20 g/mol
Putting values in equation 1, we get:
[tex]\text{Moles of }ND_3=\frac{0.320g}{20g/mol}=0.016mol[/tex]
For the given chemical equation:
[tex]Li_3N(s)+3D_2O(l)\rightarrow ND_3(g)+3LiOD(aq.)[/tex]
By Stoichiometry of the reaction:
1 mole of [tex]ND_3[/tex] is produced from 3 moles of [tex]D_2O[/tex]
So, 0.016 moles of [tex]ND_3[/tex] will be produced from = [tex]\frac{3}{1}\times 0.016=0.048mol[/tex] of [tex]D_2O[/tex]
Now, calculating the mass of [tex]D_2O[/tex] from equation 1, we get:
Molar mass of [tex]D_2O[/tex] = 20 g/mol
Moles of [tex]D_2O[/tex] = 0.048 moles
Putting values in equation 1, we get:
[tex]0.048mol=\frac{\text{Mass of D_2O}}{20g/mol}\\\\\text{Mass of }D_2O}=(0.048mol\times 20g/mol)=0.96g[/tex]
Hence, the mass of [tex]D_2O[/tex] needed is 0.96 grams