The sports car is traveling along a 30 banked road having a radius of curvature of r = 500 ft. If the coefficient of static friction between the tires and the road is ms = 0.2, determine the maximum safe speed so no slipping occurs. Neglect the size of the car.

Respuesta :

Step-by-step explanation:

Below is an attachment containing the solution.

Ver imagen nwandukelechi

The maximum speed is "118.64".

[tex]\to \Sigma fx=0 \\\\\to \frac{mv^2}{r}= N \sin \theta + V | S N \cos \theta..............(1) \\\\\to \Sigma fy =0 N \cos \theta - V| s N \sin \theta mg ......................(2)\\\\[/tex]

solving an equation 1 and 2  for maximum  speed:  

[tex]\to V_{max} = \sqrt{ \frac{r g (\sin \theta + v | s \cos \theta)}{\cos \theta - v|s \sin \theta}} \\\\[/tex]  

             [tex]= \sqrt{ \frac{500 \times 32 (\sin 30 + .2 \times \cos 30)}{\cos 30 - .2 \times \times \sin 30}} \\\\= \sqrt{ \frac{500 \times 32 (\frac{1}{2} + .2 \times \frac{\sqrt{3}}{2})}{ \frac{\sqrt{3}}{2} - .2 \times \frac{1}{2}}} \\\\= \sqrt{ \frac{16000 (\frac{1}{2} + \frac{1.73}{10})}{ \frac{1.73}{2} - \frac{1}{10}}} \\\\= \sqrt{ \frac{16000 (0.5 + 0.173)}{ 0.865 -0.1}} \\\\= \sqrt{ \frac{10768}{ 0.765 }} \\\\= \sqrt{ 14075.8165} \\\\=118.64 \ \frac{ft}{see}\\\\[/tex]

Therefore, the maximum speed "118.64".

Learn more about the maximum speed:

brainly.com/question/13563270