Respuesta :

The solution of the two equations is [tex]x=-7[/tex] and [tex]y=2[/tex]

Explanation:

The two equations are [tex]y=x+9[/tex] and [tex]3x+8y=-5[/tex]

Let us determine the solution of the equation using substitution method.

Thus, substituting [tex]y=x+9[/tex] in the equation [tex]3x+8y=-5[/tex], we get,

[tex]3x+8(x+9)=-5[/tex]

Multiplying the terms within the bracket, we have,

[tex]3x+8x+72=-5[/tex]

Subtracting both sides of the equation by -72, we get,

[tex]11x=-77[/tex]

Dividing both sides of the equation by 11, we have,

[tex]x=-7[/tex]

Now, substituting [tex]x=-7[/tex] in the equation [tex]y=x+9[/tex], we get,

[tex]y=-7+9[/tex]

[tex]y=2[/tex]

Thus, the solution of the two equations is [tex]x=-7[/tex] and [tex]y=2[/tex]

Answer:

x= -7   and y= 2

Step-by-step explanation:

Given that y= x+9  ............(i)

                 3x+8y= -5 .........(ii)

required: the value of x and y

now take equation (i) above substitute into equation (ii), we get

  3x+8(x+9)= -5

11x+72= -5

11x= -77 divide by 11, we get

x= -7

now from

y= x+9, but x= -7

y= -7+9= 2

y=2

therefore the value of x= -7 and y= 2