Gravel is being unloaded from a truck and falls into a pile shaped like a cone at a rate of 14 ft3/min. The radius of the cone base is three times the height of the cone. Find the rate (in ft/min) at which the height of the gravel changes when the pile has a height of 4 ft

Respuesta :

Answer:

0.031 ft/min

Step-by-step explanation:

Rate of unloading,  [tex]\frac{dV}{dt} = 14\ ft ^{3}/min[/tex]

height, h = 4ft

The formula for volume of a cone is;

                                       [tex]V = \frac{1}{3}\pi r^{2}h[/tex]

Given the radius of the cone base to be three times the height of the cone;

                                       r = 3h

Substituting for r = 3h in the volume of the cone

                                       [tex]V = \frac{1}{3}\pi (3h)^{2}h[/tex]    

                                       [tex]V = \frac{1}{3}\pi (9h^{2})h[/tex]

                                       [tex]V = 3\pi h^{3}[/tex]

Differentiating

                                       [tex]\frac{dV}{dt} = 9\pi h^{2}\frac{dh}{dt}[/tex]

Substituting the given values,

                                     [tex]14 ft^{3}/min = 9\pi (4 ft)^{2}\frac{dh}{dt}[/tex]

                                     [tex]\frac{dh}{dt} = \frac{ 14 ft^{3}/min}{9\pi 16 ft^{2}}[/tex]  

                                    [tex]\frac{dh}{dt} = 0.03094679 ft/min[/tex]

                                      ≈ 0.031 ft/min