Respuesta :
Answer:
W =50 J
Explanation:
given data:
T_h=600 k
T_L=300 k
Q_h=100 J
required:
W=??
solution:
║W║=║Q_h║(1-T_L/T_h)
=50 J
Answer:
50J
Explanation:
For a Carnot engine, the work output (W) per cycle is given by;
W = Q (1 - [tex]\frac{T_{C} }{T_{H}}[/tex]) ----------------(i)
Where;
Q = heat absorbed by the engine per cycle
[tex]T_{C}[/tex] = Temperature of the colder reservoir
[tex]T_{H}[/tex] = Temperature of the hotter reservoir
From the question;
Q = 100J
[tex]T_{C}[/tex] = 300K
[tex]T_{H}[/tex] = 600K
Substitute these values into equation (i) as follows;
W = 100 (1 - [tex]\frac{300 }{600}[/tex])
W = 100 (1 - [tex]\frac{1}{2}[/tex])
W = 100 ([tex]\frac{1}{2}[/tex])
W = 50 J
Therefore, the work output per cycle is 50J