Respuesta :

Option C : [tex]\sin \left(-\frac{\pi}{2}\right)[/tex] has the same value as [tex]\cos (3 \pi)[/tex]

Explanation:

It is given that to find the same value as [tex]\cos (3 \pi)[/tex] from the 4 options.

Now, we shall find the value of [tex]\cos (3 \pi)[/tex]

[tex]\cos (3 \pi)=\cos (2 \pi+\pi)[/tex]

[tex]\cos (3 \pi)=\cos (\pi)[/tex]

The value of [tex]\cos (\pi)[/tex] is -1.

Thus, the value of [tex]\cos (3 \pi)[/tex] is -1.

Option A : [tex]\sec \left(\frac{3 \pi}{2}\right)[/tex]

[tex]\sec \left(\frac{3 \pi}{2}\right)=\frac{1}{\cos \left(\frac{3 \pi}{2}\right)}[/tex]

Using the identity [tex]\cos (x)=\sin \left(\frac{\pi}{2}-x\right)[/tex],

[tex]\sec \left(\frac{3 \pi}{2}\right)=\frac{1}{\sin \left(\frac{\pi}{2}-\frac{3 \pi}{2}\right)}[/tex]

[tex]\sec \left(\frac{3 \pi}{2}\right)=\frac{1}{\sin \left(-\frac{2 \pi}{2}\right)}[/tex]

[tex]\sec \left(\frac{3 \pi}{2}\right)=\frac{1}{\sin \left(-{ \pi}\right)}[/tex]

Since, the value of [tex]\sin (\pi)[/tex] is 0. Thus, we have,

[tex]\sec \left(\frac{3 \pi}{2}\right)=\frac{1}{0\right)}[/tex]

Hence, the value of [tex]\sec \left(\frac{3 \pi}{2}\right)[/tex] is undefined.

Thus, the value of [tex]\sec \left(\frac{3 \pi}{2}\right)[/tex] is not the same as value of [tex]\cos (3 \pi)[/tex]

Therefore, Option A is not the correct answer.

Option B : [tex]\tan \left(\frac{\pi}{2}\right)[/tex]

The value of [tex]\tan \left(\frac{\pi}{2}\right)[/tex] is undefined.

Thus, the value of [tex]\tan \left(\frac{\pi}{2}\right)[/tex] is not the same as value of [tex]\cos (3 \pi)[/tex]

Therefore, Option B is not the correct answer.

Option C : [tex]\sin \left(\frac{-\pi}{2}\right)[/tex]

[tex]\sin \left(-\frac{\pi}{2}\right)=-\sin \left(\frac{\pi}{2}\right)[/tex]

Since, [tex]\sin \left(\frac{\pi}{2}\right)=1[/tex] Substituting, we have,

[tex]\sin \left(\frac{-\pi}{2}\right)=-1[/tex]

Thus, the value of [tex]\sin \left(\frac{-\pi}{2}\right)[/tex] is the same as the value of [tex]\cos (3 \pi)[/tex]

Therefore, Option C is the correct answer.

Option D : [tex]\cot (-\pi)[/tex]

Rewriting the angles,

[tex]\cot (-\pi)=\cot (-\pi+0\pi)[/tex]

Simplifying, we get,

[tex]\cot (-\pi)=\cot (0 \pi)[/tex]

The value of [tex]\cot (0 \pi)[/tex] is undefined.

Thus, the value of [tex]\cot (-\pi)[/tex] is not the same as the value of [tex]\cos (3 \pi)[/tex]

Therefore, Option D is not the correct answer.