Show that y=cos(t)y=cos(t) is a solution to (dydt)2=1−y2(dydt)2=1−y2. Enter your answers below in terms of the independent variable tt in the order in which the terms were given. Be sure you can justify your answer.

Respuesta :

Answer:

[tex](\frac{dy}{dt})^2=sin^2t[/tex]

Step-by-step explanation:

[tex]y=cost[/tex]

DE :[tex](\frac{dy}{dt})^2=1-y^2[/tex]

If y is a solution of given DE then it satisfied the DE.

Differentiate w.r.t t

[tex]\frac{dy}{dt}=-sint[/tex]

Using the formula

[tex]\frac{d(cosx)}{dx}=-sinx[/tex]

LHS:[tex](\frac{dy}{dt})^2=(-sint)^2=sin^2t[/tex]

RHS

[tex]1-y^2=1-cos^2t=sin^2t[/tex]

By using the formula

[tex]sin^2t=1-cos^2t[/tex]

LHS=RHs

Hence, y is a solution of given DE

[tex](\frac{dy}{dt})^2=sin^2t[/tex]