Respuesta :
Answer:
0.63
Explanation:
Given that:
baseline pulse rates in their worms = 9, 8, 7, 8, and 8 pulses per minute.
What is the standard deviation for the measurements?
Formula for solving standard deviation (σ) = [tex]\sqrt{\frac{E(x_i- x')^2}{N} }[/tex]
where;
N = number of people in the population
[tex]x_i[/tex] = individual entity in the population
x' = population mean
Our data given includes: 9,8,7,8,8 only
re-arranging what we have above in increasing order; we have:
7,8,8,8,9
∴ N = 5
x'(population mean) = [tex]\frac{sum of all values }{total number of thevalue}[/tex]
x'(population mean) = [tex]\frac{7+8+8+8+9}{5}[/tex]
x'(population mean) = [tex]\frac{40}{5}[/tex]
x'(population mean) = 8
[tex]x_i[/tex] ([tex]x_i[/tex]-x') ([tex]x_i[/tex]-x')²
7 (7-8) = -1 (-1)²=1
8 (8-8) = 0 (0)²=0
8 (8-8) = 0 (0)²=0
8 (8-8) = 0 (0)²=0
9 (9-8) = 1 (1)²=1
[tex]Ex_i[/tex]= 40 [tex]E(x_i-x')[/tex] = 0 [tex]E(x-x')^2[/tex] = 2
(σ) = [tex]\sqrt{\frac{E(x_i- x')^2}{N} }[/tex]
(σ) = [tex]\sqrt{\frac{2}{5} }[/tex]
(σ) = [tex]\sqrt{0.4}[/tex]
(σ) = 0.63248
(σ) = 0.63
∴ the standard deviation for the measurements = 0.63
The standard deviation for the measurements will be "0.63".
Statistics:
According to the question,
Baseline pulse rates: 9, 8, 7, 8, and 8 pulses per minute.
By arranging the terms, we get
7, 8, 8, 8, 9
Here,
Number of people, N = 5
Population mean be:
→ x' = [tex]\frac{Sum \ of \ all \ values}{Total \ number \ of \ values}[/tex]
By substituting the values,
= [tex]\frac{7+8+8+8+9}{5}[/tex]
= [tex]\frac{40}{5}[/tex]
= [tex]8[/tex]
Now,
[tex]x_i[/tex] [tex](x_i-x')[/tex] [tex](x_i-x')^2[/tex]
7 7 - 8 = -1 (-1)² = 1
8 8 - 8 = 0 (0)² = 0
8 8 - 8 = 0 (0)² = 0
8 8 - 8 = 0 (0)² = 0
9 9 - 8 = 1 (1)² = 1
[tex]Ex_i=40[/tex] [tex]E(x_i-x')=0[/tex] [tex]E(x-x')=2[/tex]
hence,
The standard deviation will be:
→ σ = [tex]\sqrt{\frac{E(x_i-x')^2}{N} }[/tex]
By substituting the values,
= [tex]\sqrt{\frac{2}{5} }[/tex]
= [tex]\sqrt{0.4}[/tex]
= [tex]0.63[/tex]
Thus the above response is correct.
Find out more information about Standard deviation here:
https://brainly.com/question/71890