A 5.7 kg object oscillates on a spring with an amplitude of 32.8 cm with a maximum acceleration of 9.3 m/s 2 . Find the total energy. Answer in units of J.

Respuesta :

Answer:

[tex]E=8.69J[/tex]

Explanation:

The total energy of a mass-spring system is defined as:

[tex]E=\frac{kA^2}{2}(1)[/tex]

Where k is the spring constant and A is the amplitude of the oscillation. We can calculate k from the natural frequency of this system:

[tex]\omega^2=\frac{k}{m}\\k=m\omega^2(2)[/tex]

Now, we can calculate [tex]\omega[/tex] from the maximum acceleration:

[tex]a_{max}=A\omega^2\\\omega^2=\frac{a_{max}}{A}(3)[/tex]

Replacing (3) in (2):

[tex]k=m\frac{a_{max}}{A}[/tex]

Replacing this in (1):

[tex]E=\frac{ma_{max} A^2}{2A}\\E=\frac{ma_{max}A}{2}\\E=\frac{5.7kg(9.3\frac{m}{s^2})(32.8*10^{-2}m)}{2}\\E=8.69J[/tex]