Find all rational zeros of the polynomial, and then find the irrational zeros, if any. Whenever appropriate, use the Rational Zeros Theorem, the Upper and Lower Bounds Theorem, Descartes' Rule of Signs, the Quadratic Formula, or other factoring techniques.

Respuesta :

Answer:

Rationals zeros 1, -2, 3/4

Irationals zeros [tex] \frac{2-\sqrt 2}{2},\frac{2+\sqrt 2}{2}[/tex]

Step-by-step explanation:

[tex] P(x)=8x^5-14x^4-22x^3+57x^2-38x+6[/tex]

The factors of 6 are: -1,1,-2,2,-3,3,-6,6.

The cactors of 8 are: -1,1,-2,2,-4,4,-8,8.

The possible rationals zeros for P(x) are: -1,1,1/2,-1/2,-1/4,1/4,-1/8,1/8,-2,2,-3,3,-3/2,3/2,-3/4,3/4,-3/8,3/8,-6,6.

For all possible rational zeros for P(x), we check is it P(rat.zero)=0?

You can see that [tex] P(1)=8-14-22+57-38+6=0[/tex]

Now we have that [tex] P(x)=(x-1)(8x^4-6x^3-28x^2+29x-6)[/tex]

In the same way we can see:

[tex] P(-2)=-3(128+48-112-58-6)=-3*0=0[/tex]

[tex] P(x)=(x-1)(x+2)(8x^3-22x^2+16x-3)[/tex]

[tex] P(3/4)=\frac{-1}{4}\frac{11}{4}(8*\frac{27}{64}-22*\frac{9}{16}+16\frac{3}{4}-3)=[/tex]

[tex]=\frac{-1}{4}\frac{11}{4}(\frac{216}{64}-\frac{792}{64}+\frac{768}{64}-\frac{192}{64})=0[/tex]

[tex] P(x)=(x-1)(x+2)(x-\frac{3}{4})(2x^2-4x+1)[/tex]

Apply the quadric formula:

[tex]x_{1,2}=\frac{-b+-\sqrt{b^2-4ac}}{2a}[/tex]

we get [tex]x_1=\frac{2-\sqrt 2}{2}[/tex] and [tex]x_2=\frac{2+\sqrt 2}{2}[/tex].

[tex]P(x)=(x-1)(x+2)(x-\frac{3}{4})(x- \frac{2+\sqrt 2}{2})(x-\frac{2-\sqrt 2}{2})[/tex]