Respuesta :
Answer:
a) [tex]1.062\times10^{-9}J[/tex]
b) [tex]6.638\times10^{-10}J[/tex]
c) [tex]1.661\times10^{-9}J[/tex]
d) [tex]9.968\times10^{-10}J[/tex]
Explanation:
Capacitance of the capacitor,
[tex]C=\frac{k\epsilon_oA}{d} =\frac{4\times8.85\times10^{-12}\times30\times100^{-2}}{5\times10^{-3}}F= 2.124\times10^{-11}F[/tex]
a) Energy of the dielectric filed capacitor,
[tex]U_1=\frac{1}{2} CV^2=\frac{1}{2}\times(2.124\times10^{-11})\times10^2J=1.062\times10^{-9}J[/tex]
b) When the dielectric is pulled out halfway with the battery still connected to the capacitor, then it acts like 2 capacitors connected in parallel.
Let the capacitance of the half with no dielectric be [tex]C_1[/tex] and of the filled half be [tex]C_2[/tex]. Then,
[tex]C_1=\frac{8.85\times10^{-12}\times15\times100^{-2}}{5\times10^{-3}}= 2.655\times10^{-12}F[/tex]
[tex]C_2=\frac{4\times8.85\times10^{-12}\times15\times100^{-2}}{5\times10^{-3}}= 1.062\times10^{-11}F[/tex]
Therefore, total capacitance [tex]C=C_1+C_2=1.328\times10^{-11}F[/tex]
and, [tex]U_2=\frac{1}{2} \times1.328\times10^{-11}\times10^2J=6.638\times10^{-10}J[/tex]
c) Let us first calculate the charge stored in the previous configuration,
[tex]Q=CV=1.328\times10^{-11}\times10C=1.328\times10^{-10}C[/tex]
Now, the dielectric is completely removed. Then the new capacitance is,
[tex]C=\frac{8.85\times10^{-12}\times30\times100^{-2}}{5\times10^{-3}}F=5.310\times10^{-12}F[/tex]
Therefore, energy of the capacitor, [tex]U_3=\frac{1}{2}\frac{Q^2}{C} =\frac{1}{2}\frac{(1.328\times10^{-10})^2}{5.310\times10^{-12}}J=1.661\times10^{-9}J[/tex]
d) The work done to remove the dielectric will be the difference in the energies of the 2 configurations (half-filled and fully removed), that is,
[tex]W=U_3-U_2=9.968\times10^{-10}J[/tex]
Following are solutions to the given points:
Given:
Please find the question.
To find:
find points=?
Solution:
For part A)
[tex]\to U_1 = 0.5\times k\times C \times V^2 \\\\\to C = e_o\times \frac{A}{d} = \frac{(8.85\times 10^{-12} \times 30 \times 10^{-4})}{(5\times 10^{-3})} = 5.31\times 10^{-12}\ F\\\\\to U_1 = 0.5\times 4\times 5.31 \times 10^{-12}\times 10^{2} =1.062\times 10^{-9}\ J\\\\[/tex]
For Part B)
when the capacitor is half-filled
[tex]\to C' = C_1+C_2 = k\times e_o\times \frac{A}{(2\times d)} = e_o\times \frac{A}{(2\times d)} = (e_o\times \frac{A}{d})\times (\frac{(k+1)}{2}) = \frac{(k+1) \times C}{2}\\\\\to U_2 = 0.5\times C'\times V^2 = 0.5\times ( \frac{(k+1)\times C}{2})\times V^2 \\\\ =0.5\times ( \frac{( (4+1)\times 5.31\times 10^{-12})}{2})\times 10^2\to U_2 = 6.6375 \times 10^{-10}\ J\\\\[/tex]
For Part C)
when disconnected from the battery the charge on the capacitor remains the same
[tex]\to U_3 = \frac{U_2}{k} = \frac{(6.6375\times 10^{-10})}{4} = 1.6593\times 10^{-10}\ J\\\\[/tex]
For Part D)
[tex]\to W = U_2-U_3 = (6.6375-1.6593)\times 10^{-10} = 4.9782\times 10^{-10}\ J[/tex]
Learn more:
brainly.com/question/14922684