Answer:
The upper endpoint of the 99% confidence interval for population proportion is 0.13.
Step-by-step explanation:
The confidence interval for population proportion is:
[tex]CI=\hat p\pm z_{\alpha /2}\sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
Given:
n = 1000
[tex]\hat p[/tex] = 0.102
[tex]z_{\alpha /2}=z_{0.01/2}=z_{0.005}=2.58[/tex]
*Use the standard normal table for the critical value.
Compute the 99% confidence interval for population proportion as follows:
[tex]CI=\hat p\pm z_{\alpha /2}\sqrt{\frac{\hat p(1-\hat p)}{n}}\\=0.102\pm 2.58\times\sqrt{\frac{0.102(1-0.102)}{1000}}\\=0.102\pm0.0248\\=(0.0772, 0.1268)\\\approx (0.08, 0.13)[/tex]
Thus, the upper limit of the 99% confidence interval for population proportion is 0.13.