What is the true solution to the logarithmic equation below? log Subscript 4 Baseline left-bracket log Subscript 4 Baseline (2 x) right-bracket = 1
x = 2
x = 8
x = 64
x = 128

Respuesta :

Step-by-step explanation:

[tex]log_4(log_4 2x)=1 \\ \\ \therefore \: log_4 2x = {4}^{1} \\ \\ \therefore \: log_4 2x =4 \\ \\ \therefore \: 2x = {4}^{4} \\ \\ \therefore \: 2x = 256 \\ \\ \therefore \: x = \frac{256}{2} \\ \\ \therefore \: x = 128[/tex]

Answer:

x = 128

Step-by-step explanation:

The given logarithm is

[tex]log_{4}(log_{4}(2x))=1[/tex]

To find the value of [tex]x[/tex], we need to uses some logarithm and exponent properties.

First, we have

[tex]log_{a}M=b \implies a^{b}=M[/tex]

Applying this property, we have

[tex]log_{4}(log_{4}(2x))=1\\4^{1}= log_{4}(2x)[/tex]

Then, we use the property again

[tex]4^{4}=2x[/tex]

Now, we solve for [tex]x[/tex]

[tex]x=\frac{256}{2}\\ x=128[/tex]

Therefore, the right answer is the last choice: x = 128.