Respuesta :

Answer:

[tex]\sqrt{5}[/tex]

Step-by-step explanation:

Using the rule of radicals

[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]

Simplifying the radicals

[tex]\sqrt{20}[/tex] = [tex]\sqrt{4(5)}[/tex] = [tex]\sqrt{4}[/tex] × [tex]\sqrt{5}[/tex] = 2[tex]\sqrt{5}[/tex]

[tex]\sqrt{45}[/tex] = [tex]\sqrt{9(5)}[/tex] = [tex]\sqrt{9}[/tex] × [tex]\sqrt{5}[/tex] = 3[tex]\sqrt{5}[/tex]

Thus

- 6(2[tex]\sqrt{5}[/tex]) + 2(3[tex]\sqrt{5}[/tex]) + 7[tex]\sqrt{5}[/tex]

= - 12[tex]\sqrt{5}[/tex] + 6[tex]\sqrt{5}[/tex] + 7[tex]\sqrt{5}[/tex]

= [tex]\sqrt{5}[/tex]