Respuesta :
Answer:
a) For this case we need to veriffy that:
[tex] \int_{1}^{\infty} f(x) dx =1[/tex]
If we replace the density function given we have this:
[tex]\int_{1}^{\infty} 3x^{-4} dx = -\frac{1}{x^3} \Big|_1^{\inty} = 0 -(-1) =1[/tex]
So then we satisfy that the total area below the probability density function is 1 and we satisfy also that [tex] f(X_i) \geq 0 , \forall X_i[/tex]
So then we can conclude that f(x) is a density function
b) [tex] F(x) = 3 \int_{1}^{x} u^{-4} du = - \frac{1}{u^3} \Big|_1^x = -\frac{1}{x^3} +1 = 1-x^{-3}[/tex]
c) [tex] P(X >4)[/tex]
And we can use the complement rule and we got:
[tex]P(X >4) = 1-P(X \leq 4)[/tex]
And using the result from part b we got:
[tex]P(X >4) = 1-P(X \leq 4)=1- [1- 4^{-3}]=1-0.984375=0.015625[/tex]
Step-by-step explanation:
Part a
For this case we need to veriffy that:
[tex] \int_{1}^{\infty} f(x) dx =1[/tex]
If we replace the density function given we have this:
[tex]\int_{1}^{\infty} 3x^{-4} dx = -\frac{1}{x^3} \Big|_1^{\inty} = 0 -(-1) =1[/tex]
So then we satisfy that the total area below the probability density function is 1 and we satisfy also that [tex] f(X_i) \geq 0 , \forall X_i[/tex]
So then we can conclude that f(x) is a density function
Part b
For this case we can calculate the cumulative distribution function with the following integral:
[tex] F(x) = 3 \int_{1}^{x} u^{-4} du = - \frac{1}{u^3} \Big|_1^x = -\frac{1}{x^3} +1 = 1-x^{-3}[/tex]
Part c
For this case we want this probability:
[tex] P(X >4)[/tex]
And we can use the complement rule and we got:
[tex]P(X >4) = 1-P(X \leq 4)[/tex]
And using the result from part b we got:
[tex]P(X >4) = 1-P(X \leq 4)=1- [1- 4^{-3}]=1-0.984375=0.015625[/tex]