Respuesta :
Answer:
a)[tex]P(X>35)=P(\frac{X-\mu}{\sigma}>\frac{35-\mu}{\sigma})=P(Z>\frac{35-25}{4})=P(Z>2.5)[/tex]
And we can find this probability using the complement rule:
[tex]P(Z>2.5)=1-P(Z<2.5) =1-0.994=0.006 [/tex]
TI84 procedure
2nd > DISTR> Vars> normalcdf
1-normalcdf(35;10000;25;4)
b) [tex]P(12<X<37)=P(\frac{12-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{37-\mu}{\sigma})=P(\frac{12-25}{4}<Z<\frac{37-25}{4})=P(-3.25<z<3)[/tex]And we can find this probability with this difference:
[tex]P(-3.25<z<3)=P(z<3)-P(z<-3.25)[/tex]
And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.
[tex]P(-3.25<z<3)=P(z<3)-P(-3.25)=0.999-0.0006=0.998[/tex]
TI84 procedure
2nd > DISTR> Vars> normalcdf
normalcdf(12;37;25;4)
c) [tex]P(X<37)=P(\frac{X-\mu}{\sigma}<\frac{37-\mu}{\sigma})=P(Z<\frac{37-25}{4})=P(Z<3)[/tex]
[tex]P(Z<3) =0.99865[/tex]
TI84 procedure
2nd > DISTR> Vars> normalcdf
normalcdf(-10000;37;25;4)
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Part a
Let X the random variable that represent the hours spent studying the week before final exams of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(25,4)[/tex]
Where [tex]\mu=25[/tex] and [tex]\sigma=4[/tex]
We are interested on this probability
[tex]P(X>35)[/tex]
And the best way to solve this problem is using the normal standard distribution and the z score given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
If we apply this formula to our probability we got this:
[tex]P(X>35)=P(\frac{X-\mu}{\sigma}>\frac{35-\mu}{\sigma})=P(Z>\frac{35-25}{4})=P(Z>2.5)[/tex]
And we can find this probability using the complement rule:
[tex]P(Z>2.5)=1-P(Z<2.5) =1-0.994=0.006 [/tex]
TI84 procedure
2nd > DISTR> Vars> normalcdf
1-normalcdf(35;10000;25;4)
Part b[tex]P(12<X<37)=P(\frac{12-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{37-\mu}{\sigma})=P(\frac{12-25}{4}<Z<\frac{37-25}{4})=P(-3.25<z<3)[/tex]And we can find this probability with this difference:
[tex]P(-3.25<z<3)=P(z<3)-P(z<-3.25)[/tex]
And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.
[tex]P(-3.25<z<3)=P(z<3)-P(-3.25)=0.999-0.0006=0.998[/tex]
TI84 procedure
2nd > DISTR> Vars> normalcdf
normalcdf(12;37;25;4)
Part c
[tex]P(X<37)=P(\frac{X-\mu}{\sigma}<\frac{37-\mu}{\sigma})=P(Z<\frac{37-25}{4})=P(Z<3)[/tex]
[tex]P(Z<3) =0.99865[/tex]
TI84 procedure
2nd > DISTR> Vars> normalcdf
normalcdf(-10000;37;25;4)