An instructor who taught two sections of engineering statistics last term, the first with 25 students and the second with 35, decided to assign a term project. After all projects had been turned in, the instructor randomly ordered them before grading. Consider the first 15 graded projects.

a. What is the probability that exactly 10 of these are from the second section? (Round your answer to four decimal places.)
b. What is the probability that at least 10 of these are from the second section? (Round your answer to four decimal places.)
c. What is the probability that at least 10 of these are from the same section? (Round your answer to four decimal places.)
d. What are the mean value and standard deviation of the number among these 15 that are from the second section? (Round your mean to the nearest whole number and your standard deviation to three decimal places.)
e. What are the mean value and standard deviation of the number of projects not among these first 15 that are from the second section? (Round your mean to the nearest whole number and your standard deviation to three decimal places.)

Respuesta :

Answer:

a) P=0.1721

b) P=0.3528

c) P=0.3981

Step-by-step explanation:

This sampling can be modeled by a binominal distribution where p is the probability of a project to belong to the first section and q the probability of belonging to the second section.

a) In this case we have a sample size of n=15.

The value of p is p=25/(25+35)=0.4167 and q=1-0.4167=0.5833.

The probability of having exactly 10 projects for the second section is equal to having exactly 5 projects of the first section.

This probability can be calculated as:

[tex]P=\frac{n!}{(n-k)!k!}p^kq^{n-k}= \frac{15!}{(10)!5!}\cdot 0.4167^5\cdot0.5833^{10}=0.1721[/tex]

b) To have at least 10 projects from the 2nd section, means we have at most 5 projects for the first section. In this case, we have to calculate the probability for k=0 (every project belongs to the 2nd section), k=1, k=2, k=3, k=4 and k=5.

We apply the same formula but as a sum:

[tex]P(k\leq5)=\sum_{k=0}^{5}\frac{n!}{(n-k)!k!}p^kq^{n-k}[/tex]

Then we have:

[tex]P(k=0)=0.0003\\P(k=1)=0.0033\\P(k=2)=0.0165\\P(k=3)=0.0511\\P(k=4)=0.1095\\P(k=5)=0.1721\\\\P(k\leq5)=0.0003+0.0033+0.0165+0.0511+0.1095+0.1721=0.3528[/tex]

c) In this case, we have the sum of the probability that k is equal or less than 5, and the probability tha k is 10 or more (10 or more projects belonging to the 1st section).

The first (k less or equal to 5) is already calculated.

We have to calculate for k equal to 10 or more.

[tex]P(k\geq10)=\sum_{k=10}^{15}\frac{n!}{(n-k)!k!}p^kq^{n-k}[/tex]

Then we have

[tex]P(k=10)=0.0320\\P(k=11)=0.0104\\P(k=12)=0.0025\\P(k=13)=0.0004\\P(k=14)=0.0000\\P(k=15)=0.0000\\\\P(k\geq10)=0.032+0.0104+0.0025+0.0004+0+0=0.0453[/tex]

The sum of the probabilities is

[tex]P(k\leq5)+P(k\geq10)=0.3528+0.0453=0.3981[/tex]