Answer:
[tex]k\not = -1,1[/tex]
[tex]x=\frac{4k-1}{3(k^2-1)}[/tex]
[tex]y=\frac{k-4}{3(k^2-1)}[/tex]
Step-by-step explanation:
First we see that 3k/3 can't be equal to 3/3k, so we have
[tex]9k^2\not =9[/tex], i.e, k can't be -1 or 1.
multiple first equation with k:
[tex]3k^2x+3ky=4k[/tex]
[tex]3x+3ky=1[/tex]
then we have:
[tex]3(k^2-1)x=4k-1[/tex]
i.e,
[tex]x=\frac{4k-1}{3(k^2-1)}[/tex]
And now we calc y:
[tex]3k\frac{4k-1}{3(k^2-1)}+3y=4[/tex]
[tex]y=\frac{k-4}{3(k^2-1)}[/tex]
for any k not eql to -1 or 1.