Respuesta :

[tex]$\frac{(x+4)^{2}}{x-4} \div \frac{x^{2}-16}{4 x-16}=\frac{4(x+4)}{(x-4)}[/tex]

Solution:

Given expression is

[tex]$\frac{(x+4)^{2}}{x-4} \div \frac{x^{2}-16}{4 x-16}[/tex]

To solve this expression:

[tex]$\frac{(x+4)^{2}}{x-4} \div \frac{x^{2}-16}{4 x-16}=\frac{(x+4)^{2}}{x-4} \div \frac{x^{2}-4^2}{4( x-4)}[/tex]

Using algebraic identity: [tex]a^2-b^2=(a-b)(a+b)[/tex]

                               [tex]$=\frac{(x+4)^{2}}{x-4} \div \frac{(x-4)(x+4)}{4( x-4)}[/tex]

We can't solve it with division symbol. So change this into multiplication and solve it.

The second term is reversed when you change division into multiplication.

                                [tex]$=\frac{(x+4)^{2}}{x-4} \times \frac{4(x-4)}{( x-4)(x+4)}[/tex]

                                [tex]$=\frac{(x+4)(x+4)}{x-4} \times \frac{4(x-4)}{( x-4)(x+4)}[/tex]

                                [tex]$=\frac{4(x+4)(x+4)(x-4)}{(x-4)( x-4)(x+4)}[/tex]

Now, cancel the common terms in the numerator and denominator.

                                [tex]$=\frac{4(x+4)}{(x-4)}[/tex]

[tex]$\frac{(x+4)^{2}}{x-4} \div \frac{x^{2}-16}{4 x-16}=\frac{4(x+4)}{(x-4)}[/tex]

Hence the answer is [tex]\frac{4(x+4)}{(x-4)}[/tex].