Check that the point (1,-1,2) lies on the given surface. Then, viewing the surface as a level surface for a function f(x,y,z), find a vector normal to the surface and an equation for the tangent plane to the surface at (1,-1,2).

2x^2-3y^2+z^2=3.

Vector normal? and tangent plane?

Respuesta :

Answer:

(1,-1,2) lies on the surface.

Therefore a vector to the normal to the surface is

[tex]\hat{n}=2\hat{i}+3\hat{j}+2\hat{k}[/tex]

Therefore the equation of tangent plane is

2x+3y+2z=3

Step-by-step explanation:

Given equation of surface is

2x²-3y²+z²=3

Given point is (1,-1,2)

To check that whether the point lies on the surface or not .

We have to put x=1 , y= -1 and z= 2 in the given surface.

L.H.S

2(1)²-3(-1)²+2²

=2-3+4

=3 = R.H.S

Since the point (1,-1,2) point satisfies the equation.

Therefore (1,-1,2) lies on the surface.

Here f(x,y,z)= 2x²-3y²+z²

To find the a vector normal to the surface we have to find

[tex]f_x=\frac{\partial f }{\partial x}[/tex]    [ where only variable is x]

[tex]f_y=\frac{\partial f }{\partial y}[/tex]    [ where only variable y]

[tex]f_z=\frac{\partial f }{\partial z}[/tex]   [ where only variable z]

[tex]f_x=\frac{\partial f }{\partial x}=\frac{\partial }{\partial x}(2x^2-3y^2+z^2)[/tex]   = 4x

[tex]f_y=\frac{\partial f }{\partial y}=\frac{\partial }{\partial y}(2x^2-3y^2+z^2)=-6y[/tex]

[tex]f_z=\frac{\partial f }{\partial z}=\frac{\partial }{\partial z}(2x^2-3y^2+z^2)=2z[/tex]

The gradient at (1,-1,2)

[tex]\bigtriangledown f(1,-1,2)\\= (4\times 1)\hat{i} +[-6\times (-1)]\hat{j}+(2\times 2)\hat{k}[/tex]   [ putting x=1,y=-1 and z=2 in

[tex]=4\hat{i}+6\hat{j}+4\hat{k}[/tex]                                       [tex]f_x,f_y \ and \ f_z[/tex]]

Therefore a vector to the normal to the surface is

[tex]\hat{n}=4\hat{i}+6\hat{j}+4\hat{k}[/tex]

[tex]or,\hat{n}=2\hat{i}+3\hat{j}+2\hat{k}[/tex]       [ remove the common part= 2]

The equation of tangent plane is

[tex]\vec{r}.\hat{n}=\vec {a}.\hat{n}[/tex]

[tex]\vec{r}= x\hat{i}+y\hat{j}+z\hat{k}[/tex]

[tex]\hat{n}[/tex] = normal vector

[tex]\vec{a}[/tex] = the position vector of the given point

Here [tex]\hat{n}=2\hat{i}+3\hat{j}+2\hat{k}[/tex]    and   [tex]\vec a= \hat i-\hat j+2\hat k[/tex]

Therefore the equation of tangent plane is

[tex]( x\hat{i}+y\hat{j}+z\hat{k}).(2\hat{i}+3\hat{j}+2\hat{k})=( \hat i-\hat j+2\hat k). (2\hat{i}+3\hat{j}+2\hat{k})[/tex]

⇒2.x+3.y+2.z=(1.2)+(-1)(3)+2.2

⇒2x+3y+2z=2-3+4

⇒2x+3y+2z=3