Consider the function f(x)=ex4+ex (A) Find the first derivative of f. f′(x) = (4e^x)/(e^x+4)^2 equation editorEquation Editor (B) Use interval notation to indicate where f(x) is increasing. NOTE: Use 'Inf' for [infinity], '-Inf' for −[infinity], and use 'U' for the union symbol. Increasing: equation editorEquation Editor (C) List the x coordinates of all local minima of f. If there are no local maxima, enter 'NONE'. x values of local minima: equation editorEquation Editor . (D) List the x coordinates of all local maxima of f. If there are no local maxima, enter 'NONE'. x values of local maxima: equation editorEquation Editor . (E) Find the second derivative of f: f′′(x) = equation editorEquation Editor (F) Use interval notation to indicate the interval(s) of upward concavity of f(x). Concave up: equation editorEquation Editor (F) Use interval notation to indicate the interval(s) of downward concavity for f(x) Concave down: equation editorEquation Editor (G) List the x values of the inflection points of f. If there are no inflection points, enter 'NONE'. x values of inflection points: equation editorEquation Editor .

Respuesta :

Answer:

[tex]f(x)=\frac{e^x}{4+e^x}[/tex]

Step-by-step explanation:

a) First derivative:

[tex]f'(x)=\frac{(e^x)'(4+e^x)-e^x(4+e^x)'}{(4+e^x)^2}[/tex]

[tex]f'(x)=\frac{4e^x}{(4+e^x)^2}[/tex]

b) Increasing

f(x) is increasing if f'(x)>0. We can see that (4+e^x)^2 is always positive and 4e^x is also alwayspositive, so f'(x) is always positive. then we have that increasing iterval is [-inf,-inf].

c) and d) NONE f(x) is define on [-inf,inf] and f'(x)>0 for every x, we dont have local minima and max.

e) second derivative:

[tex] f''(x)=\frac{4e^x(4+e^x)^2-8e^x(4+e^x)e^x}{(4+e^x)^4}[/tex]

[tex]f''(x)=\frac{16e^x+4e^{2x}-8e^{2x}}{(4+e^x)^3}[/tex]

[tex]f''(x)=\frac{16e^x-4e^{2x}}{(4+e^x)^3}[/tex]

f) f"(x)>=0 if [tex]4e^x-e^{2x}>=0[/tex] i.e. [tex]x=< ln4][/tex]

Upward on on  (-inf, ln4)

f"(x)<0 if [tex]x>ln4[/tex].

Downward on [ln4, +inf)

g) infllections point (ln4, 1/2)