Respuesta :

Answer:

  • [tex]a_{12}=-244140625[/tex]

Step-by-step explanation:

Considering the geometric sequence

[tex]5,-25,\:125,\:...[/tex]

[tex]a_1=5[/tex]

As the common ratio '[tex]r[/tex]' between consecutive terms is constant.

[tex]\mathrm{Compute\:the\:ratios\:of\:all\:the\:adjacent\:terms}:\quad \:r=\frac{a_{n+1}}{a_n}[/tex]

[tex]r=\frac{-25}{5}=-5[/tex]

[tex]r=\frac{125}{-25}=-5[/tex]

The general term of a geometric sequence is given by the formula:  

[tex]a_n=a_1\cdot \:r^{n-1}[/tex]

where [tex]a_1[/tex] is the initial term and [tex]r[/tex] the common ratio.

Putting [tex]n = 12[/tex] , [tex]r = -5[/tex] and [tex]a_1=5[/tex] in the general term of a geometric sequence to determine the 12th term of the sequence.

[tex]a_n=a_1\cdot \:r^{n-1}[/tex]

[tex]a_n=5\left(-5\right)^{n-1}[/tex]

[tex]a_{12}=5\left(-5\right)^{12-1}[/tex]

      [tex]=5\left(-5^{11}\right)[/tex]

[tex]\mathrm{Remove\:parentheses}:\quad \left(-a\right)=-a[/tex]

       [tex]=-5\cdot \:5^{11}[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \:a^b\cdot \:a^c=a^{b+c}[/tex]

        [tex]=-5^{1+11}[/tex]     ∵ [tex]5\cdot \:5^{11}=\:5^{1+11}[/tex]

        [tex]=-244140625[/tex]

Therefore,

  • [tex]a_{12}=-244140625[/tex]

Answer:

a_{9}=1953125

a  

9

​  

=1953125

Step-by-step explanation: