Answer:
[tex]2.27\times10^{-5} C [/tex]
[tex] 1.02\times10^{-7} \frac{N}{C} [/tex]
Explanation:
[tex] \overrightarrow{F}=\overrightarrow{F_e}+\overrightarrow{W}[/tex]
By Newton's first law for an object to remain stationary the net force on it should be zero, so:
[tex] \overrightarrow{F}=\overrightarrow{F_e}+\overrightarrow{W}=0[/tex], then
[tex] \overrightarrow{F_e}=-\overrightarrow{W}[/tex] (1)
electric force is:
[tex] \overrightarrow{E}=q \overrightarrow{F}[/tex] (2)
with q the charge of the particle and E the electric field
and weight is:
[tex] \overrightarrow{W}=-mg[/tex] (1)
with g the acceleration due gravity and m the mass. Using (3) and (2) on (1)
[tex]q \overrightarrow{E}=mg [/tex]
because electric field is downward directed its sign is negative so:
[tex]q (-630)=1.46\times10^{-3}(9.81) [/tex]
solving for q
[tex]q= \frac{1.46\times10^{-3}(9.81)}{-630}=2.27\times10^{-5} C [/tex]
[tex] W=m_pg=(1.67\times10^{-27})(9.81)=1.64\times10^{-26}[/tex]
So electric force should be equal to W:
[tex]F_e=1.64\times10^{-26} [/tex]
[tex]qE= 1.64\times10^{-26}[/tex]
solving for E:
[tex]E= \frac{1.64\times10^{-26}}{q}=\frac{1.64\times10^{-26}}{1.61\times10^{-19}}=1.02\times10^{-7} \frac{N}{C} [/tex]