Respuesta :
Answer:
The solution for the given problem is done below.
Explanation:
M1 = 2.0
[tex]\frac{p1}{p*}[/tex] = 0.3636
[tex]\frac{T1}{T*}[/tex] = 0.5289
[tex]\frac{T01}{T0*}[/tex] = 0.7934
Isentropic Flow Chart: M1 = 2.0 , [tex]\frac{T01}{T1}[/tex] = 1.8
T1 = [tex]\frac{1}{0.7934}[/tex] (1.8)(288K) = 653.4 K.
In order to choke the flow at the exit (M2=1), the above T0* must be stagnation temperature at the exit.
At the inlet,
T02= [tex]\frac{T02}{T1}T1[/tex] = (1.8)(288K) = 518.4 K.
Q= Cp(T02-T01) = [tex]\frac{1.4(287 J / (Kg.K)}{1.4-1}(653.4-518.4)K[/tex] = 135.7*[tex]10^{3}[/tex] J/Kg.
Answer:
q=135.7×10^3 J/kg
T_0^*= 653.4K
Explanation:
q=135.7×10^3 J/kg
T_0^*= 653.4K
M_1=2.0 => p_1/p^* =0.3636 T_1/T^* =0.5289 T_01/T_0 =0.7934
Isentropic flow properties chart:
M_1=2.0 => T_01/T_1 =1.8
T_0^*= ‖(T_O^*)/T_01 ‖‖T_01/T_1 ‖ T_1=‖1/0.7934‖(1.8)(288K)= 653.4K
In order to choke the flow at the exit (M_2=1),the above T_0^*= T_02; p_2=p^*
T_0^* must be the stagnation temperature at the exit.
At the inlet
T_02=T_02/T_1 T_1=(1.8)(288K)=518.4K
q=c_p (T_02-T_01 )=γ^R/(γ-1) (T_02-T_01 )=1.4(287J/(kg.K))/(1.4-1) (653.4-518.4)K=135.7×10^3 J/kg