Respuesta :
Answer:
The sample of sizes 2 and their mean are given below.
Step-by-step explanation:
The population consist of 5 values, S = {1, 3, 4, 4, 6}.
The number of samples of size 2 (without replacement) that can be formed from these 5 values is:
[tex]{5\choose 2}=\frac{5!}{2!(5-2)!} =10[/tex]
Th formula to compute the mean is:
[tex]\bar x=\frac{1}{n}\sum x_{i}[/tex]
List the 10 samples and their mean as follows:
Sample Mean
(1, 3) [tex]\bar x=\frac{1}{2}[1+3]=\frac{4}{2}=2.0[/tex]
(1, 4) [tex]\bar x=\frac{1}{2}[1+4]=\frac{5}{2}=2.5[/tex]
(1, 4) [tex]\bar x=\frac{1}{2}[1+4]=\frac{5}{2}=2.5[/tex]
(1, 6) [tex]\bar x=\frac{1}{2}[1+6]=\frac{7}{2}=3.5[/tex]
(3, 4) [tex]\bar x=\frac{1}{2}[3+4]=\frac{7}{2}=3.5[/tex]
(3, 4) [tex]\bar x=\frac{1}{2}[3+4]=\frac{7}{2}=3.5[/tex]
(3, 6) [tex]\bar x=\frac{1}{2}[3+6]=\frac{9}{2}=4.5[/tex]
(4, 4) [tex]\bar x=\frac{1}{2}[4+4]=\frac{8}{2}=4.0[/tex]
(4, 6) [tex]\bar x=\frac{1}{2}[4+6]=\frac{10}{2}=5.0[/tex]
(4, 6) [tex]\bar x=\frac{1}{2}[4+6]=\frac{10}{2}=5.0[/tex]