Respuesta :

Answer:

The perimeter is 66.9 units

Step-by-step explanation:

See the attached figure with letters to better understand the problem

step 1

In the right triangle ABD

Find the length side AD

[tex]tan(33^o)=\frac{8}{AD}[/tex] ----> by TOA (opposite side divided by the adjacent side)

[tex]AD=\frac{8}{tan(33^o)}=12.3\ units[/tex]

Find the length side BD

[tex]sin(33^o)=\frac{8}{BD}[/tex] ---> by SOH (opposite side divided by the hypotenuse)

[tex]BD=\frac{8}{sin(33^o)}=14.7\ units[/tex]

step 2

In the right triangle CDE

Find the length side CE

[tex]cos(64^o)=\frac{CD}{CE}[/tex] --> by CAH (adjacent side divided by the hypotenuse)

we have

[tex]CD=BD/2=14.7/2=7.35\ units[/tex]

substitute

[tex]CE=\frac{7.35}{cos(64^o)}=16.8\ units[/tex]

Find the length side DE

[tex]tan(64^o)=\frac{DE}{CD}[/tex] --> by TOA (opposite side divided by the adjacent side)

[tex]DE=tan(64^o){7.35}=15.1\ units[/tex]

step 3

Find the perimeter of the figure

The perimeter is equal to

[tex]P=AB+AD+BD+CE+DE[/tex]

substitute the values

[tex]P=8+12.3+14.7+16.8+15.1=66.9\ units[/tex]

Ver imagen calculista