Respuesta :

Answer:

[tex]\frac{1}{5}[/tex]

Step-by-step explanation:

Using the rules of exponents

[tex]a^{m}[/tex] × [tex]a^{n}[/tex] = [tex]a^{(m+n)}[/tex], [tex]\frac{a^{m} }{a^{n} }[/tex] = [tex]a^{(m-n)}[/tex], [tex](a^m)^{n}[/tex] = [tex]a^{mn}[/tex]

Simplifying the product of the first 2 terms

[tex]\frac{a^{p^2+pq} }{a^{pq+q^2} }[/tex] × [tex]\frac{a^{q^2+qr} }{a^{qr+r^2} }[/tex]

= [tex]a^{p^2-q^2}[/tex] × [tex]a^{q^2-r^2}[/tex]

= [tex]a^{p^2-r^2}[/tex]

Simplifying the third term

5([tex](a^p+r)^{p-r}[/tex]

= 5[tex]a^{(p+r)(p-r)}[/tex] = 5[tex]a^{(p^2-r^2)}[/tex]

Performing the division, that is

[tex]\frac{a^{(p^2-r^2)} }{5a^{(p^2-r^2)} }[/tex] ← cancel [tex]a^{(p^2-r^2)}[/tex] on numerator/ denominator leaves

= [tex]\frac{1}{5}[/tex]