The rate constants of some reactions double with every 10 degree rise in temperature. Assume that a reaction takes place at 271 K and 281 K. What must the activation energy be for the rate constant to double as described?

Respuesta :

Answer : The activation energy for the reaction is, 119.7 J

Explanation :

According to the Arrhenius equation,

[tex]K=A\times e^{\frac{-Ea}{RT}}[/tex]

or,

[tex]\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]

where,

[tex]K_1[/tex] = rate constant at 271 K

[tex]K_2[/tex] = rate constant at 281 K = [tex]2K_1[/tex]

[tex]Ea[/tex] = activation energy for the reaction = ?

R = gas constant = 8.314 J/mole.K

[tex]T_1[/tex] = initial temperature = 271 K

[tex]T_2[/tex] = final temperature = 281 K

Now put all the given values in this formula, we get:

[tex]\log (\frac{2K_1}{K_1})=\frac{Ea}{2.303\times 8.314J/mole.K}[\frac{1}{271K}-\frac{1}{281K}][/tex]

[tex]Ea=119.7J[/tex]

Therefore, the activation energy for the reaction is, 119.7 J