Answer:
Explanation:
1. Chemical reaction:
[tex]H_2O(g)+Cl_2O(g)\rightleftharpoons 2 HOCl(g)[/tex]
2. Initial concentrations:
i) 1.3 g H₂O
ii) 2.2 g Cl₂O
3. ICE (Initial, Change, Equilibrium) table
[tex]H_2O(g)+Cl_2O(g)\rightleftharpoons 2 HOCl(g)[/tex]
I 0.0481 0.0326 0
C -x -x +x
E 0.0481-x 0.0326-x x
4. Equilibrium expression
[tex]K_c=\dfrac{[HOCl]^2}{[H_2O].[Cl_2O]}[/tex]
[tex]0.09=\dfrac{x^2}{(0.0481-x)(0.0326-x)}[/tex]
5. Solve:
[tex]x^2=0.09(x-0.0481)(x-0.0326)\\\\0.91x^2+0.007263x-0.000141125=0[/tex]
Use the quadatic formula:
[tex]x=\dfrac{-0.007263\pm \sqrt{(0.007263)^2-4(0.91)(-0.000141125)}}{2(0.91)}[/tex]
The positive result is x = 0.00909
Thus the concentrations are: