Graph the following system of equations and find the x-coordinate of the solution.

3x+3y=3

Y=-1/2x+2

x = 0

x = 3

x = 2

x = -2
WILL GIVE BRAINLIEST IF CORRECT!

Respuesta :

The x - coordinate of the solution is [tex]x=-2[/tex]

Explanation:

The two equations are [tex]$3 x+3 y=3$[/tex] and [tex]y=-\frac{1}{2} x+2[/tex]

Let us determine the value of the x - coordinate using the substitution method.

Let us substitute [tex]y=-\frac{1}{2} x+2[/tex] in the equation [tex]$3 x+3 y=3$[/tex], we get,

[tex]3x+3(-\frac{1}{2} x+2)=3[/tex]

Multiplying the term 3 within the bracket, we get,

[tex]3x-\frac{3}{2} x+6=3[/tex]

Subtracting both sides of the equation by 6, we get,

[tex]3x-\frac{3}{2} x=-3[/tex]

Taking LCM on the LHS of the equation, we get,

[tex]\frac{6x-3x}{2} =-3[/tex]

Subtracting the numerator, we have,

[tex]\frac{3x}{2}=-3[/tex]

Multiplying both sides of the equation by 2, we have,

[tex]3x=-6[/tex]

Dividing both sides of the equation by 3, we get,

[tex]x=-2[/tex]

Thus, the x - coordinate of the solution is [tex]x=-2[/tex]