Answer:
The probability is [tex]\frac{1}{126}[/tex]
Step-by-step explanation:
given number of boys = 5
given number of girls = 5
number of ways the boys can sit [tex](n_b)[/tex] = 5! ways
number of ways the girls can sit [tex](n_g)[/tex]= 5! ways
Total numbers ways they can sit = (5! + 5!) ways = 10! ways
The probability that the boys are all sitting together and the girls are all sitting together;
[tex]=\frac{2*n(b)Xn(g)}{10!}[/tex]
[tex]=\frac{2*5!X5!}{10!}\\\\=\frac{28800}{3628800} =\frac{1}{126}[/tex]