Respuesta :
Answer:
Therefore the ratio of diameter of the copper to that of the tungsten is
[tex]\sqrt{3} :\sqrt{10}[/tex]
Explanation:
Resistance: Resistance is defined to the ratio of voltage to the electricity.
The resistance of a wire is
- directly proportional to its length i.e[tex]R\propto l[/tex]
- inversely proportional to its cross section area i.e[tex]R\propto \frac{1}{A}[/tex]
Therefore
[tex]R=\rho\frac{l}{A}[/tex]
ρ is the resistivity.
The unit of resistance is ohm (Ω).
The resistivity of copper(ρ₁) is 1.68×10⁻⁸ ohm-m
The resistivity of tungsten(ρ₂) is 5.6×10⁻⁸ ohm-m
For copper:
[tex]A=\pi r_1^2 =\pi (\frac{d_1}{2} )^2[/tex]
[tex]R_1=\rho_1\frac{l_1}{\pi(\frac{d_1}{2})^2 }[/tex]
[tex]\Rightarrow (\frac{d_1}{2})^2=\rho_1\frac{l_1}{\pi R_1 }[/tex]......(1)
Again for tungsten:
[tex]R_2=\rho_2\frac{l_2}{\pi(\frac{d_2}{2})^2 }[/tex]
[tex]\Rightarrow (\frac{d_2}{2})^2=\rho_2\frac{l_2}{\pi R_2 }[/tex]........(2)
Given that [tex]R_1=R_2[/tex] and [tex]l_1=l_2[/tex]
Dividing the equation (1) and (2)
[tex]\Rightarrow\frac{ (\frac{d_1}{2})^2}{ (\frac{d_2}{2})^2}=\frac{\rho_1\frac{l_1}{\pi R_1 }}{\rho_2\frac{l_2}{\pi R_2 }}[/tex]
[tex]\Rightarrow( \frac{d_1}{d_2} )^2=\frac{1.68\times 10^{-8}}{5.6\times 10^{-8}}[/tex] [since [tex]R_1=R_2[/tex] and [tex]l_1=l_2[/tex]]
[tex]\Rightarrow( \frac{d_1}{d_2} )=\sqrt{\frac{1.68\times 10^{-8}}{5.6\times 10^{-8}}}[/tex]
[tex]\Rightarrow( \frac{d_1}{d_2} )=\sqrt{\frac{3}{10}}[/tex]
[tex]\Rightarrow d_1:d_2=\sqrt{3} :\sqrt{10}[/tex]
Therefore the ratio of diameter of the copper to that of the tungsten is
[tex]\sqrt{3} :\sqrt{10}[/tex]